# Moose / Olap / Insert Data Documentation – TypeScript ## Included Files 1. moose/olap/insert-data/insert-data.mdx ## Inserting Data Source: moose/olap/insert-data/insert-data.mdx Insert data into OLAP tables using various methods # Inserting Data Inserting data into your database is a common task. MooseStack provides a few different ways to insert data into your database. If a table column is modeled as optional in your app type but has a ClickHouse default, Moose treats incoming records as optional at the API/stream boundary, but the ClickHouse table stores the column as required with a DEFAULT clause. If you omit the field in the payload, ClickHouse fills it with the default at insert time. `field?: number & ClickHouseDefault<"18">` or `WithDefault` ## From a Stream (Streaming Ingest) When you need to stream data into your ClickHouse tables, you can set the `Stream.destination` as a reference to the `OlapTable` you want to insert into. This will automatically provision a synchronization process that batches and inserts data into the table. ```ts filename="StreamInsert.ts" copy interface Event { id: Key; userId: string; timestamp: Date; eventType: string; } const eventsTable = new OlapTable("Events"); const stream = new Stream("Events", { destination: eventsTable // automatically syncs the stream to the table in ClickHouse-optimized batches }); ``` [ClickHouse inserts need to be batched for optimal performance](https://clickhouse.com/blog/asynchronous-data-inserts-in-clickhouse#data-needs-to-be-batched-for-optimal-performance). Moose automatically batches your data into ClickHouse-optimized batches of up to 100,000 records, with automatic flushing every second. It also handles at-least-once delivery and retries on connection errors to ensure your data is never lost. ## From a Workflow (Batch Insert) If you have data source better suited for batch patterns, use a workflow and the direct `insert()` method to land data into your tables: ```ts filename="WorkflowInsert.ts" copy interface Event { id: Key; userId: string; timestamp: Date; eventType: string; } const eventsTable = new OlapTable("user_events"); const etlTask = new Task({ name: "ETL", run: async () => { const result = await eventsTable.insert([ { id: "evt_1", userId: "user_123", timestamp: new Date(), eventType: "click" }, { id: "evt_2", userId: "user_456", timestamp: new Date(), eventType: "view" } // ... more records of type Event ]); } }) ) ``` ## From a Client App ### Via REST API In your Moose code, you can leverage the built in [MooseAPI module](/moose/apis) to place a `POST` REST API endpoint in front of your streams and tables to allow you to insert data from external applications. ```ts filename="IngestApi.ts" copy const ingestApi = new IngestApi("user_events", { destination: events_stream }); ``` Alternatively, use `IngestPipeline` instead of standalone `IngestApi`, `Stream` `OlapTable` components: ```ts filename="IngestPipeline.ts" copy const eventsPipeline = new IngestPipeline("user_events", { ingestApi: true, stream: true, table: { orderByFields: ["id", "timestamp"], engine: ClickHouseEngines.ReplacingMergeTree, } }) ``` With these APIs you can leverage the built-in OpenAPI client integration to generate API clients in your own language to connect to your pipelines from external applications. ### Coming Soon: MooseClient We're working on a new client library that you can use to interact with your Moose pipelines from external applications. Join the community slack to stay updated and let us know if you're interested in helping us build it. ## Direct Data Insertion The `OlapTable` provides an `insert()` method that allows you to directly insert data into ClickHouse tables with validation and error handling. ### Inserting Arrays of Records ```ts filename="DirectInsert.ts" copy interface UserEvent { id: Key; userId: string; timestamp: Date; eventType: string; } const eventsTable = new OlapTable("user_events"); // Insert single record or array of records const result = await eventsTable.insert([ { id: "evt_1", userId: "user_123", timestamp: new Date(), eventType: "click" }, { id: "evt_2", userId: "user_456", timestamp: new Date(), eventType: "view" } ]); console.log(`Successfully inserted: ${result.successful} records`); console.log(`Failed: ${result.failed} records`); ``` ClickHouse strongly recommends batching inserts. You should avoid inserting single records in to tables, and consider using Moose Streams and Ingest Pipelines if your data source sends events as individual records. ### Handling Large Batch Inserts For large datasets, use Node.js streams for memory-efficient processing: ```ts filename="StreamInsert.ts" copy const dataStream = new Readable({ objectMode: true, read() { // Stream implementation } }); const result = await eventsTable.insert(dataStream, { strategy: 'fail-fast' // Note: 'isolate' not supported with streams }); ``` ### Validation Methods Before inserting data, you can validate it using the following methods: ```ts filename="ValidationMethods.ts" copy // Type guard with compile-time type narrowing if (eventsTable.isValidRecord(unknownData)) { // TypeScript now knows unknownData is UserEvent console.log(unknownData.userId); // Type-safe access } // Detailed validation with error reporting const validationResult = eventsTable.validateRecord(unknownData); if (validationResult.success) { console.log("Valid data:", validationResult.data); } else { console.log("Validation errors:", validationResult.errors); } // Assert validation (throws on failure) try { const validData = eventsTable.assertValidRecord(unknownData); // Use validData with full type safety } catch (error) { console.log("Validation failed:", error.message); } ``` ### Error Handling Strategies Choose from three error handling strategies based on your reliability requirements: #### Fail-Fast Strategy (Default) ```ts filename="FailFast.ts" copy // Stops immediately on any error const result = await eventsTable.insert(data, { strategy: 'fail-fast' }); ``` #### Discard Strategy ```ts filename="Discard.ts" copy // Discards invalid records, continues with valid ones const result = await eventsTable.insert(data, { strategy: 'discard', allowErrors: 10, // Allow up to 10 failed records allowErrorsRatio: 0.05 // Allow up to 5% failure rate }); ``` #### Isolate Strategy ```ts filename="Isolate.ts" copy // Retries individual records to isolate failures const result = await eventsTable.insert(data, { strategy: 'isolate', allowErrorsRatio: 0.1 }); // Access detailed failure information if (result.failedRecords) { result.failedRecords.forEach(failed => { console.log(`Record ${failed.index} failed: ${failed.error}`); }); } ``` ### Performance Optimization The insert API includes several performance optimizations: - **Memoized connections**: ClickHouse clients are reused across insert calls - **Batch processing**: Optimized batch sizes for large datasets - **Async inserts**: Automatic async insert mode for datasets > 1000 records - **Connection management**: Use `close_client()` when completely done ```ts filename="Performance.ts" copy // For high-throughput scenarios const result = await eventsTable.insert(largeDataset, { validate: false, // Skip validation for performance strategy: 'discard' }); // Clean up when completely done (optional) await eventsTable.closeClient(); ``` ## Best Practices