Inserting data into your database is a common task. MooseStack provides a few different ways to insert data into your database.
If a table column is modeled as optional in your app type but has a ClickHouse default, Moose treats incoming records as optional at the API/stream boundary, but the ClickHouse table stores the column as required with a DEFAULT clause. If you omit the field in the payload, ClickHouse fills it with the default at insert time.
Annotated[int, clickhouse_default("18")]
When you need to stream data into your ClickHouse tables, you can set the Stream.destination as a reference to the OlapTable you want to insert into. This will automatically provision a synchronization process that batches and inserts data into the table.
import { Stream } from "@514labs/moose-lib"; interface Event { id: Key<string>; userId: string; timestamp: Date; eventType: string;} const eventsTable = new OlapTable<Event>("Events"); const stream = new Stream<Event>("Events", { destination: eventsTable // automatically syncs the stream to the table in ClickHouse-optimized batches});from moose_lib import Stream, StreamConfig, Keyfrom pydantic import BaseModelfrom datetime import datetime class Event(BaseModel): id: Key[str] user_id: str timestamp: datetime event_type: str events_table = OlapTable[Event]("user_events") events_pipeline = Stream[Event]("user_events", StreamConfig( destination=events_table # Automatically syncs the stream to the table in ClickHouse-optimized batches))ClickHouse inserts need to be batched for optimal performance. Moose automatically batches your data into ClickHouse-optimized batches of up to 100,000 records, with automatic flushing every second. It also handles at-least-once delivery and retries on connection errors to ensure your data is never lost.
If you have data source better suited for batch patterns, use a workflow and the direct insert() method to land data into your tables:
from moose_lib import OlapTable, Key, InsertOptionsfrom pydantic import BaseModelfrom datetime import datetime class UserEvent(BaseModel): id: Key[str] user_id: str timestamp: datetime event_type: str events_table = OlapTable[UserEvent]("user_events") # Direct insertion for ETL workflowsresult = events_table.insert([ {"id": "evt_1", "user_id": "user_123", "timestamp": datetime.now(), "event_type": "click"}, {"id": "evt_2", "user_id": "user_456", "timestamp": datetime.now(), "event_type": "view"}]) print(f"Successfully inserted: {result.successful} records")print(f"Failed: {result.failed} records")In your Moose code, you can leverage the built in MooseAPI module to place a POST REST API endpoint in front of your streams and tables to allow you to insert data from external applications.
from moose_lib import IngestApi, IngestConfig ingest_api = IngestApi[Event]("user_events", IngestConfig( destination=events_stream))We're working on a new client library that you can use to interact with your Moose pipelines from external applications.
The OlapTable provides an insert() method that allows you to directly insert data into ClickHouse tables with validation and error handling.
from moose_lib import OlapTable, Key, InsertOptionsfrom pydantic import BaseModelfrom datetime import datetime class UserEvent(BaseModel): id: Key[str] user_id: str timestamp: datetime event_type: str events_table = OlapTable[UserEvent]("user_events") # Insert single record or array of recordsresult = events_table.insert([ {"id": "evt_1", "user_id": "user_123", "timestamp": datetime.now(), "event_type": "click"}, {"id": "evt_2", "user_id": "user_456", "timestamp": datetime.now(), "event_type": "view"}]) print(f"Successfully inserted: {result.successful} records")print(f"Failed: {result.failed} records")ClickHouse strongly recommends batching inserts. You should avoid inserting single records in to tables, and consider using Moose Streams and Ingest Pipelines if your data source sends events as individual records.
For large datasets, use Python generators for memory-efficient processing:
def user_event_generator(): """Generate user events for memory-efficient processing.""" for i in range(10000): yield { "id": f"evt_{i}", "user_id": f"user_{i % 100}", "timestamp": datetime.now(), "event_type": "click" if i % 2 == 0 else "view" } # Insert from generator (validation not available for streams)result = events_table.insert(user_event_generator(), InsertOptions(strategy="fail-fast"))Before inserting data, you can validate it using the following methods:
from moose_lib import OlapTable, Keyfrom pydantic import BaseModel class UserEvent(BaseModel): id: Key[str] user_id: str event_type: str events_table = OlapTable[UserEvent]("user_events") # Validate a single recordvalidated_data, error = events_table.validate_record(unknown_data)if validated_data is not None: print("Valid data:", validated_data)else: print("Validation error:", error) # Validate multiple records with detailed error reportingvalidation_result = events_table.validate_records(data_array)print(f"Valid records: {len(validation_result.valid)}")print(f"Invalid records: {len(validation_result.invalid)}")for error in validation_result.invalid: print(f"Record {error.index} failed: {error.error}")Choose from three error handling strategies based on your reliability requirements:
from moose_lib import InsertOptions # Stops immediately on any errorresult = events_table.insert(data, InsertOptions(strategy="fail-fast"))from moose_lib import InsertOptions # Discards invalid records, continues with valid onesresult = events_table.insert(data, InsertOptions( strategy="discard", allow_errors=10, # Allow up to 10 failed records allow_errors_ratio=0.05 # Allow up to 5% failure rate))from moose_lib import InsertOptions # Retries individual records to isolate failuresresult = events_table.insert(data, InsertOptions( strategy="isolate", allow_errors_ratio=0.1)) # Access detailed failure informationif result.failed_records: for failed in result.failed_records: print(f"Record {failed.index} failed: {failed.error}")The insert API includes several performance optimizations:
close_client() when completely donefrom moose_lib import InsertOptions # For high-throughput scenariosresult = events_table.insert(large_dataset, InsertOptions( validate=False, # Skip validation for performance strategy="discard")) # Clean up when completely done (optional)events_table.close_client()Use IngestPipeline with streams for continuous data ingestion from APIs and external sources
Use OlapTable.insert() for ETL workflows and bulk data imports
Use validation methods to catch data quality issues early
Use fail-fast for critical data, discard for high-volume scenarios, and isolate for debugging