APIs
Viewing:
Overview
APIs are functions that run on your server and automatically exposed as HTTP GET
endpoints.
They are designed to read data from your OLAP database. Out of the box, these APIs provide:
- Automatic type validation and type conversion for your query parameters, which are sent in the URL, and response body
- Managed database client connection
- Automatic OpenAPI documentation generation
Common use cases include:
- Powering user-facing analytics, dashboards and other front-end components
- Enabling AI tools to interact with your data
- Building custom APIs for your internal tools
Basic Usage
import { Api } from "@514labs/moose-lib";
import { SourcePipeline } from "path/to/SourcePipeline";
// Define the query parameters
interface QueryParams {
filterField: string;
maxResults: number;
}
// Model the query result type
interface ResultItem {
id: number;
name: string;
value: number;
}
const SourceTable = SourcePipeline.table!; // Use `!` to assert that the table is not null
const cols = SourceTable.columns;
// Define the result type as an array of the result item type
export const exampleApi = new Api<QueryParams, ResultItem[]>("example_endpoint",
async ({ filterField, maxResults }: QueryParams, { client, sql }) => {
const query = sql`
SELECT
${cols.id},
${cols.name},
${cols.value}
FROM ${SourceTable}
WHERE category = ${filterField}
LIMIT ${maxResults}`;
// Set the result type to the type of the each row in the result set
const resultSet = await client.query.execute<ResultItem>(query);
// Return the result set as an array of the result item type
return await resultSet.json();
});
execute
is the recommended way to execute queries. It provides a thin wrapper around the ClickHouse Python client so that you can safely pass OlapTable
and Column
objects to your query without needing to worry about ClickHouse identifiers:
from moose_lib import Api, MooseClient
from pydantic import BaseModel
## Import the source pipeline
from app.path.to.SourcePipeline import SourcePipeline
# Define the query parameters
class QueryParams(BaseModel):
filter_field: str
max_results: int
# Define the response body
class ResponseBody(BaseModel):
id: int
name: str
value: float
SourceTable = SourcePipeline.get_table()
# Define the route handler function (parameterized)
def run(client: MooseClient, params: QueryParams) -> list[ResponseBody]:
query = """
SELECT
id,
name,
value
FROM {table}
WHERE category = {category}
LIMIT {limit}
"""
return client.query.execute(query, {"table": SourceTable, "category": params.filter_field, "limit": params.max_results})
# Create the API
example_api = Api[QueryParams, ResponseBody](name="example_endpoint", query_function=run)
The Api
class takes:
- Route name: The URL path to access your API (e.g.,
"example_endpoint"
) - Handler function: Processes requests with typed parameters and returns the result
The generic type parameters specify:
QueryParams
: The structure of accepted URL parametersResponseBody
: The exact shape of your API’s response data
MooseTip:
You can name these types anything you want. The first type generates validation for query parameters, while the second defines the response structure for OpenAPI documentation.
Moose automatically handles:
URL parameter validation and type conversion
SQL query interpolation and execution
Response formatting
Automated OpenAPI documentation
Type Validation
You can also model the query parameters and response body as interfacesPydantic models, which Moose will use to provide automatic type validation and type conversion for your query parameters, which are sent in the URL, and response body.
Modeling Query Parameters
Define your API’s parameters as a TypeScript interface:
interface QueryParams {
filterField: string;
maxResults: number;
optionalParam?: string; // Not required for client to provide
}
Define your API’s parameters as a Pydantic model:
from pydantic import BaseModel
from typing import Optional
class QueryParams(BaseModel):
filterField: str = Field(..., description="The field to filter by")
maxResults: int = Field(..., description="The maximum number of results to return")
optionalParam: Optional[str] = Field(None, description="An optional parameter")
Moose automatically handles:
- Runtime validation
- Clear error messages for invalid parameters
- OpenAPI documentation generation
Warning:
Complex nested objects and arrays are not supported. Analytics APIs are GET
endpoints designed to be simple and lightweight.
Adding Advanced Type Validation
Moose uses Typia to extract type definitions and provide runtime validation. Use Typia’s tags for more complex validation:
interface QueryParams {
filterField: string;
// Ensure maxResults is a positive integer
maxResults: number & tags.Type<"int64"> & tags.Minimum<"1">;
}
Moose uses Pydantic for runtime validation. Use Pydantic’s Field
class for more complex validation:
from pydantic import BaseModel, Field
class QueryParams(BaseModel):
filterField: str = Field(pattern=r"^(id|name|email)$", description="The field to filter by") ## Only allow valid column names from the UserTable
maxResults: int = Field(gt=0, description="The maximum number of results to return") ## Positive integer
Common Validation Options
interface QueryParams {
// Numeric validations
id: number & tags.Type<"uint32">; // Positive integer (0 to 4,294,967,295)
age: number & tags.Minimum<18> & tags.Maximum<120>; // Range: 18 <= age <= 120
price: number & tags.ExclusiveMinimum<0> & tags.ExclusiveMaximum<1000>; // Range: 0 < price < 1000
discount: number & tags.MultipleOf<0.5>; // Must be multiple of 0.5
// String validations
username: string & tags.MinLength<3> & tags.MaxLength<20>; // Length between 3-20 characters
email: string & tags.Format<"email">; // Valid email format
zipCode: string & tags.Pattern<"^[0-9]{5}$">; // 5 digits
uuid: string & tags.Format<"uuid">; // Valid UUID
ipAddress: string & tags.Format<"ipv4">; // Valid IPv4 address
// Date validations
startDate: string & tags.Format<"date">; // YYYY-MM-DD format
// Literal validation
status: "active" | "pending" | "inactive"; // Must be one of these values
// Optional parameters
limit?: number & tags.Type<"uint32"> & tags.Maximum<100>; // Optional, if provided: positive integer <= 100
// Combined validations
searchTerm?: (string & tags.MinLength<3>) | null; // Either null or string with ≥3 characters
}
Notice its just regular TypeScript union types. For a full list of validation options, see the Typia documentation.
You can derive a safe orderBy union from your actual table columns and use it directly in SQL:
interface MyTableSchema {
column1: string;
column2: number;
column3: string;
}
const MyTable = new OlapTable<MyTableSchema>("my_table");
interface QueryParams {
orderByColumn: keyof MyTableSchema; // validates against the column names in "my_table"
}
from pydantic import BaseModel, Field
class QueryParams(BaseModel):
# Numeric validations
id: int = Field(..., gt=0)
age: int = Field(..., gt=0, lt=120)
price: float = Field(..., gt=0, lt=1000)
discount: float = Field(..., gt=0, multiple_of=0.5)
# String validations
username: str = Field(..., min_length=3, max_length=20)
email: str = Field(..., format="email")
zipCode: str = Field(..., pattern=r"^[0-9]{5}$")
uuid: str = Field(..., format="uuid")
ipAddress: str = Field(..., format="ipv4")
# Date validations
startDate: str = Field(..., format="date")
# Enum validation
status: str = Field(..., enum=["active", "pending", "inactive"])
# Optional parameters
limit: int = Field(None, gt=0, lt=100)
For a full list of validation options, see the Pydantic documentation.
Setting Default Values
You can set default values for parameters by setting values for each parameter in the API route handler function signature:
interface QueryParams {
filterField: string;
maxResults: number;
optionalParam?: string; // Not required for client to provide
}
const api = new Api<QueryParams, ResponseBody>("example_endpoint",
async ({ filterField = "example", maxResults = 10, optionalParam = "default" }, { client, sql }) => {
// Your logic here...
}
);
You can set default values for parameters by setting values for each parameter in your Pydantic model:
from pydantic import BaseModel
class QueryParams(BaseModel):
filterField: str = "example"
maxResults: int = 10
optionalParam: str | None = "default"
Implementing Route Handler
API route handlers are regular functions, so you can implement whatever arbitrary logic you want inside these functions. Most of the time you will be use APIs to expose your data to your front-end applications or other tools:
Connecting to the Database
Moose provides a managed MooseClient
to your function execution context. This client provides access to the database and other Moose resources, and handles connection pooling/lifecycle management for you:
import { ApiUtil } from "@514labs/moose-lib";
import { UserTable } from "./UserTable";
async function handler({ client, sql }: ApiUtil) {
const query = sql`SELECT * FROM ${UserTable}`;
const data = await client.query.execute<UserSchema>(query);
}
Pass the type of the result to the client.query.execute<T>()
method to ensure type safety.
from moose_lib import MooseClient
from app.UserTable import UserTable
def run(client: MooseClient, params: QueryParams):
# You can use a formatted string for simple static query
query = """
SELECT COUNT(*) FROM {table}
"""
## You can optionally pass the table object to the query
return client.query.execute(query, {"table": UserTable})
## Create the API
example_api = Api[QueryParams, ResponseBody](name="example_endpoint", query_function=run)
Constructing Safe SQL Queries
The sql
template literal in Moose provides type-safe query construction with protection against SQL injection. Below are some examples of common patterns for builing safe queries:
from pydantic import BaseModel, Field
class QueryParams(BaseModel):
min_age: int = Field(ge=0, le=150)
status: str = Field(pattern=r"^(active|inactive)$")
limit: int = Field(default=10, ge=1, le=1000)
search_text: str = Field(pattern=r'^[a-zA-Z0-9\s]*$')
def run(client: MooseClient, params: QueryParams):
query = """
SELECT *
FROM users
WHERE age >= {min_age}
AND status = '{status}'
AND name ILIKE '%{search_text}%'
LIMIT {limit}
"""
return client.query.execute(query, {"min_age": params.min_age, "status": params.status, "search_text": params.search_text, "limit": params.limit})
Basic Query Parameter Interpolation
import { UserTable } from "./UserTable";
const minAge = 18;
const userRole = "admin";
const query = sql`
SELECT * FROM ${UserTable}
WHERE age > ${minAge}
AND role = ${userRole}
`;
// MooseClient handles type conversion and escaping
const data = await client.query.execute<UserSchema>(query);
// EXECUTION: SELECT * FROM users WHERE age > 18 AND role = 'admin'
Table and Column References
Reference tables and columns directly from your Moose objects as variables in your sql
template literals:
import { userTable } from "../tables/userTable";
const query = sql`
SELECT
${UserTable.columns.id},
${UserTable.columns.name},
${UserTable.columns.email}
FROM ${UserTable}
WHERE ${UserTable.columns.isActive} = true
`;
// EXECUTION: SELECT id, name, email FROM users WHERE is_active = true
Type Safety
Static type checking ensures you only reference columns that actually exist.
from moose_lib import Api, MooseClient
from pydantic import BaseModel, Field, constr
from typing import Literal, Optional
from enum import Enum
from app.UserTable import UserTable
class QueryParams(BaseModel):
# When using f-strings, we need extremely strict validation
column: str = Field(pattern=r"^(id|name|email)$", description="Uses a regex pattern to only allow valid column names")
search_term: str = Field(
pattern=r'^[\w\s\'-]{1,50}$', # Allows letters, numbers, spaces, hyphens, apostrophes; Does not allow special characters that could be used in SQL injection
strip_whitespace=True,
min_length=1,
max_length=50
)
limit: int = Field(
default=10,
ge=1,
le=100,
description="Number of results to return"
)
def run(client: MooseClient, params: QueryParams):
query = """
SELECT {column}
FROM {table}
WHERE name ILIKE '%{search_term}%'
LIMIT {limit}
"""
return client.query.execute(query, {"column": UserTable.cols[params.column], "table": UserTable, "search_term": params.search_term, "limit": params.limit})
Advanced Query Patterns
Dynamic Column & Table Selection
Use ApiHelpers
to handle dynamic column and table references in your queries:
import { ApiHelpers as CH } from "@514labs/moose-lib";
interface QueryParams {
sortBy: string; // Column to sort by
fields: string; // Comma-separated list of columns to select (e.g., "id,name,email")
}
const queryHandler = async ({ sortBy = "id", fields = "id,name" }: QueryParams, { client, sql }) => {
// Split the comma-separated string into individual fields
const fieldList = fields.split(',').map(f => f.trim());
// Build the query by selecting each column individually
const query = sql`
SELECT
${fieldList.map(field => sql`${CH.column(field)}`).join(', ')}
FROM ${userTable}
ORDER BY ${CH.column(sortBy)}
`;
// MooseClient converts fieldList to valid ClickHouse identifiers
return client.query.execute(query);
// EXECUTION: `SELECT id, name FROM users ORDER BY id`
};
import { ApiHelpers as CH } from "@514labs/moose-lib";
interface QueryParams {
tableName: string;
}
const queryHandler = async ({ tableName = "users" }: QueryParams, { client, sql }) => {
const query = sql`
SELECT * FROM ${CH.table(tableName)}
`;
// MooseClient converts tableName to a valid ClickHouse identifier
return client.query.execute(query);
// EXECUTION: `SELECT * FROM users`
};
from app.UserTable import UserTable
class QueryParams(BaseModel):
colName: str = Field(pattern=r"^(id|name|email)$", description="Uses a regex pattern to only allow valid column names from the UserTable")
class QueryResult(BaseModel):
id: Optional[int]
name: Optional[str]
email: Optional[str]
def run(client: MooseClient, params: QueryParams):
# Put column and table in the dict for variables
query = "SELECT {column} FROM {table}"
return client.query.execute(query, {"column": UserTable.cols[params.colName], "table": UserTable})
## Create the API
bar = Api[QueryParams, QueryResult](name="bar", query_function=run)
## Call the API
## HTTP Request: GET http://localhost:4000/api/bar?colName=id
## EXECUTED QUERY: SELECT id FROM users
Conditional WHERE
Clauses
Build WHERE
clauses based on provided parameters:
interface FilterParams {
minAge?: number;
status?: "active" | "inactive";
searchText?: string;
}
const buildQuery = ({ minAge, status, searchText }: FilterParams, { sql }) => {
let conditions = [];
if (minAge !== undefined) {
conditions.push(sql`age >= ${minAge}`);
}
if (status) {
conditions.push(sql`status = ${status}`);
}
if (searchText) {
conditions.push(sql`(name ILIKE ${'%' + searchText + '%'} OR email ILIKE ${'%' + searchText + '%'})`);
}
// Build the full query with conditional WHERE clause
let query = sql`SELECT * FROM ${userTable}`;
if (conditions.length > 0) {
// Join conditions with AND operator
let whereClause = conditions.join(' AND ');
query = sql`${query} WHERE ${whereClause}`;
}
query = sql`${query} ORDER BY created_at DESC`;
return query;
};
class FilterParams(BaseModel):
min_age: Optional[int]
status: Optional[str] = Field(pattern=r"^(active|inactive)$")
search_text: Optional[str] = Field(pattern=r"^[a-zA-Z0-9\s]+$", description="Alphanumeric search text without special characters to prevent SQL injection")
class QueryResult(BaseModel):
id: int
name: str
email: str
def build_query(client: MooseClient, params: FilterParams) -> QueryResult:
# Using f-strings with validated parameters
conditions = []
if params.min_age:
conditions.append("age >= {min_age}")
parameters["min_age"] = params.min_age
if params.status:
conditions.append("status = {status}")
parameters["status"] = params.status
if params.search_text:
conditions.append("(name ILIKE {search_text} OR email ILIKE {search_text})")
parameters["search_text"] = params.search_text
where_clause = f" WHERE {' AND '.join(conditions)}" if conditions else ""
query = f"""SELECT * FROM users {where_clause} ORDER BY created_at DESC"""
return client.query.execute(query, parameters)
## Create the API
bar = Api[FilterParams, QueryResult](name="bar", query_function=build_query)
## Call the API
## HTTP Request: GET http://localhost:4000/api/bar?min_age=20&status=active&search_text=John
## EXECUTED QUERY: SELECT * FROM users WHERE age >= 20 AND status = 'active' AND (name ILIKE '%John%' OR email ILIKE '%John%') ORDER BY created_at DESC
Adding Authentication
Moose supports authentication via JSON web tokens (JWTs). When your client makes a request to your Analytics API, Moose will automatically parse the JWT and pass the authenticated payload to your handler function as the jwt
object:
async (
{ orderBy = "totalRows", limit = 5 },
{ client, sql, jwt }
) => {
// Use jwt.userId to filter data for the current user
const query = sql`
SELECT * FROM userReports
WHERE user_id = ${jwt.userId}
LIMIT ${limit}
`;
return client.query.execute(query);
}
def run(client: MooseClient, params: QueryParams, jwt: dict):
# Use parameter binding with JWT data
query = """SELECT * FROM userReports WHERE user_id = {user_id} LIMIT 5"""
return client.query.execute(query, {"user_id": jwt["userId"]})
JWT Error Handling
Moose validates the JWT signature and ensures the JWT is properly formatted. If the JWT authentication fails, Moose will return a 401 Unauthorized error
.
Understanding Response Codes
Moose automatically provides standard HTTP responses:
Status Code | Meaning | Response Body |
---|---|---|
200 | Success | Your API’s result data |
400 | Validation error | { "error": "Detailed message"} |
401 | Unauthorized | { "error": "Unauthorized"} |
500 | Internal server error | { "error": "Internal server error"} |
Post-Processing Query Results
After executing your database query, you can transform the data before returning it to the client. This allows you to:
Common post-processing operations:
Transform field names or data formats
Calculate derived values
Filter or sort results
Aggregate or group data
Apply business logic
interface QueryParams {
category: string;
maxResults: number;
}
interface ResponseBody {
itemId: number;
displayName: string;
formattedValue: string;
isHighValue: boolean;
date: string;
}
const processDataApi = new Api<QueryParams, ResponseBody>(
"process_data_endpoint",
async ({ category, maxResults = 10 }, { client, sql }) => {
// 1. Fetch raw data
const query = sql`
SELECT id, name, value, timestamp
FROM data_table
WHERE category = ${category}
LIMIT ${maxResults}
`;
const rawResults = await client.query.execute<{
id: number;
name: string;
value: number;
timestamp: string;
}>(query);
// 2. Post-process the results
return rawResults.map(row => ({
// Transform field names
itemId: row.id,
displayName: row.name.toUpperCase(),
// Add derived fields
formattedValue: `$${row.value.toFixed(2)}`,
isHighValue: row.value > 1000,
// Format dates
date: new Date(row.timestamp).toISOString().split('T')[0]
}));
}
);
from datetime import datetime
from moose_lib import Api
from pydantic import BaseModel
class QueryParams(BaseModel):
category: str
max_results: int = 10
class ResponseItem(BaseModel):
itemId: int
displayName: str
formattedValue: str
isHighValue: bool
date: str
def run(client: MooseClient, params: QueryParams):
# 1. Fetch raw data using parameter binding
query = """
SELECT id, name, value, timestamp
FROM data_table
WHERE category = {category}
LIMIT {limit}
"""
raw_results = client.query.execute(query, {"category": params.category, "limit": params.max_results})
# 2. Post-process the results
processed_results = []
for row in raw_results:
processed_results.append(ResponseItem(
# Transform field names
itemId=row['id'],
displayName=row['name'].upper(),
# Add derived fields
formattedValue=f"${row['value']:.2f}",
isHighValue=row['value'] > 1000,
# Format dates
date=datetime.fromisoformat(row['timestamp']).date().isoformat()
))
return processed_results
# Create the API
process_data_api = Api[QueryParams, ResponseItem](name="process_data_endpoint", query_function=run)
Best Practices
Post-Processing Best Practices
Prefer database processing for large datasets
When working with large amounts of data, perform as much filtering, grouping, and aggregation as possible in your SQL query
Keep response size reasonable
Post-process to reduce response size when needed, especially for user-facing APIs
Format dates and numbers consistently
Ensure consistent formatting for dates, currencies, and other values in your responses
Handle sensitive data appropriately
Use post-processing to remove or mask sensitive information before returning data to clients
Add clear error handling
Include appropriate error handling in your post-processing logic
MooseTip:
While post-processing gives you flexibility, remember that database operations are typically more efficient for heavy data manipulation. Reserve post-processing for transformations that are difficult to express in SQL or that involve application-specific logic.
Client Integration
By default, all API endpoints are automatically integrated with OpenAPI/Swagger documentation. You can integrate your OpenAPI SDK generator of choice to generate client libraries for your APIs.
Please refer to the OpenAPI page for more information on how to integrate your APIs with OpenAPI.