MooseStack

Moose OLAP

Modeling Tables

Modeling Tables

Viewing:

Overview

Tables in Moose let you define your database schema entirely in code using native TypeScript/Python typing.

You can integrate tables into your pipelines as destinations for new data or as sources for analytics queries in your downstream transformations, APIs, and more.

FirstTable.ts
interface MyFirstTable {
  id: Key<string>;
  name: string;
  age: number;
}
 
// Create a table named "first_table"
export const myTable = new OlapTable<MyFirstTable>("first_table");

Benefits:

Boilerplate CREATE/ALTER TABLE statements handled for you

Automatic type mapping to ClickHouse types

Built-in type validation on insert

Version-controlled schema management

Basic Usage

Standalone Tables

Create a table directly for custom data flows or when you need fine-grained control:

StandaloneTable.ts
import { OlapTable, Key } from "@514labs/moose-lib";
 
// Define your schema
interface ExampleSchema {
  id: Key<string>;
  dateField: Date;
  numericField: number;
  booleanField: boolean;
  floatField: number;
  integerField: number & tags.Type<"int64">; // Moose supports native tagged types so you can use Integers in typescript
}
 
// Create a standalone table named "example_table"
export const exampleTable = new OlapTable<ExampleSchema>("example_table", {
  orderByFields: ["id", "dateField"] // Optional when using a primary key
});
 
// For deduplication, use the ReplacingMergeTree factory
export const dedupTable = OlapTable.withReplacingMergeTree<ExampleSchema>("example_table", {
  orderByFields: ["id", "dateField"],
  ver: "updatedAt",  // Optional: version column (keeps highest value)
  isDeleted: "deleted"  // Optional: soft delete flag (requires ver)
});
 
// Now you can:
// - Write to this table from streams
// - Query it directly
// - Use it as a source for materialized views

Use Standalone Tables When:

Use when you need to do a bulk import of data

Use when you have in-memory ETL/ELT workflows that need to write directly to a table as opposed to a streaming ingestion pipeline

Use when you have some external service that is maintaining and writing to the table, like a CDC or other external ETL service

Creating Tables in Ingestion Pipelines

For end-to-end data flows, create tables as part of an ingestion pipeline:

PipelineTable.ts
import { IngestPipeline, Key } from "@514labs/moose-lib";
 
// Define your schema
interface UserEvent {
  id: Key<string>;
  userId: string;
  timestamp: Date;
  eventType: string;
}
 
// Create a complete ingestion pipeline with a table
const eventsPipeline = new IngestPipeline<UserEvent>("user_events", {
  ingestApi: true,    // Creates a REST API endpoint at POST localhost:4000/ingest/user_events
  stream: true,    // Creates Kafka/Redpanda topic
  table: {         // Creates and configures the table named "user_events"
    orderByFields: ["id", "timestamp"]
  }
});
 
// Access the table component when needed
const eventsTable = eventsPipeline.table;

Data Modeling

Special ClickHouse Types (LowCardinality, Nullable, etc)

ClickHouseTypes.ts
import { Key, Decimal, ClickHouseDecimal, LowCardinality, ClickHouseNamedTuple, tags } from "@514labs/moose-lib";
 
export interface ClickHouseOptimizedExample {
  id: Key<string>;
  stringField: string;
  numberField: number;
  decimalField: Decimal<10, 2>;                         // Precise decimal storage
  // Alternative: decimalField: string & ClickHouseDecimal<10, 2>; // Verbose syntax still works
  lowCardinalityField: string & LowCardinality;         // Faster queries for enum-like data
  nestedObject: {
    innerString: string;
    innerNumber: number;
  };
  namedTupleField: {
    name: string;
    value: number;
  } & ClickHouseNamedTuple;                             // Optimized nested storage
  numberArray: number[];
  mapField: Record<string, number>;
  literalField: "optionA" | "optionB";
  optionalField?: string;                               // Nullable field
  dateField: Date;
}

Default values

Use defaults instead of nullable columns to keep queries fast and schemas simple. You can specify defaults at the column level so Moose generates ClickHouse defaults in your table DDL.

Defaults.ts
import { OlapTable, Key, ClickHouseDefault, Decimal, ClickHouseDecimal } from "@514labs/moose-lib";
 
interface Event {
  id: Key<string>;
  // Static defaults (ClickHouse expression as a string literal)
  status: string & ClickHouseDefault<"'pending'">;   // DEFAULT 'pending'
  retries: number & ClickHouseDefault<"0">;          // DEFAULT 0
  // Server-side timestamps
  createdAt: Date & ClickHouseDefault<"now()">;      // DEFAULT now()
  // Decimal with default
  amount: Decimal<10, 2> & ClickHouseDefault<"0">;
  // Alternative: amount: (string & ClickHouseDecimal<10, 2> & ClickHouseDefault<"0">); // Verbose syntax
}
 
export const events = new OlapTable<Event>("events", {
  orderByFields: ["id", "createdAt"],
});

The value passed into the ClickHouseDefault<""> tag can either be a string literal or a stringified ClickHouse SQL expression. If you run into typing issues specifically on Date fields with ClickHouseDefault, use WithDefault<Date, "now()"> as a fallback workaround.

ClickHouse defaults with optional fields

If a field is optional in your app model but you provide a ClickHouse default, Moose infers a non-nullable ClickHouse column with a DEFAULT clause.

  • Optional without default (e.g., field?: number) → ClickHouse Nullable type.
  • Optional with default (e.g., field?: number & ClickHouseDefault<"18"> or WithDefault<number, "18">) → non-nullable column with default 18.

This lets you keep optional fields at the application layer while avoiding Nullable columns in ClickHouse when a server-side default exists.

Database Selection

By default, tables are created in the database specified in your moose.config.toml ClickHouse configuration. You can override this on a per-table basis using the database field:

DatabaseOverride.ts
import { OlapTable } from "@514labs/moose-lib";
 
interface UserData {
  id: Key<string>;
  name: string;
  email: string;
}
 
// Table in default database (from moose.config.toml)
const defaultTable = new OlapTable<UserData>("users");
 
// Table in specific database (e.g., "analytics")
const analyticsTable = new OlapTable<UserData>("users", {
  database: "analytics",
  orderByFields: ["id"]
});

Multi-database setup

To use custom databases, configure them in your moose.config.toml:

[clickhouse_config]
db_name = "local"
additional_databases = ["analytics", "staging"]

The databases in additional_databases will be created automatically when you start your Moose application.

Primary Keys and Sorting

You must configure table indexing using one of these approaches:

  1. Define at least one Key in your table schema
  2. Specify orderByFields in the table config
  3. Use both (all Key fields must come first in the orderByFields array)
PrimaryKeyConfig.ts
import { OlapTable, Key } from '@514labs/moose-lib';
 
// Approach 1: Using primary key only
interface Record1 {
  id: Key<string>;  // Primary key field
  field1: string;
  field2: number;
}
 
const table1 = new OlapTable<Record1>("table1");  // id is the primary key

Order By Fields Only

OrderByFieldsOnly.ts
// Approach 2: Using orderByFields only
interface SchemaWithoutPrimaryKey {
  field1: string;
  field2: number;
  field3: Date;
}
 
const tableWithOrderByFieldsOnly = new OlapTable<SchemaWithoutPrimaryKey>("table2", {
  orderByFields: ["field1", "field2"]  // Specify ordering without primary key
});

Order By Expression

Use a ClickHouse SQL expression to control ordering directly. This is useful for advanced patterns (functions, transformations) or when you want to disable sorting entirely.

OrderByExpression.ts
// Use a ClickHouse expression for ORDER BY
interface Events {
  userId: string;
  createdAt: Date;
  eventType: string;
}
 
const tableWithOrderByExpression = new OlapTable<Events>("events", {
  // Equivalent to orderByFields: ["userId", "createdAt", "eventType"]
  orderByExpression: "(userId, createdAt, eventType)",
});
 
// Advanced: functions inside expression
const tableWithMonthBucketing = new OlapTable<Events>("events_by_month", {
  orderByExpression: "(userId, toYYYYMM(createdAt))",
});
 
// No sorting (ClickHouse tuple() means empty ORDER BY)
const unsortedTable = new OlapTable<Events>("events_unsorted", {
  orderByExpression: "tuple()",
});

Using Both Primary Key and Order By Fields

ComboKeyAndOrderByFields.ts
// Approach 3: Using both (primary key must be first)
interface SchemaWithKey {
  id: Key<string>;  // Primary key field
  field1: string;
  field2: number;
}
 
const tableWithKeyAndOrderByFields = new OlapTable<SchemaWithKey>("table3", {
  orderByFields: ["id", "field1"]  // Primary key must be first
});

Using Multiple Primary Keys

MultiKeyTable.ts
interface MultiKeyRecord {
  key1: Key<string>;
  key2: Key<number>;
  field1: string;
}
 
const multiKeyTable = new OlapTable<MultiKeyRecord>("multi_key_table", {
  orderByFields: ["key1", "key2", "field1"]  // Multiple keys must come first
});

Table engines

By default, Moose will create tables with the MergeTree engine. You can use different engines by setting the engine in the table configuration.

TableEngine.ts
import { OlapTable } from "@514labs/moose-lib";
 
// Default MergeTree engine
const table = new OlapTable<Record>("table", {
  orderByFields: ["id"]
});
 
// Use engine configuration for other engines
const dedupTable = new OlapTable<Record>("table", {
  engine: ClickHouseEngines.ReplacingMergeTree,
  orderByFields: ["id"],
  ver: "version",  // Optional: keeps row with highest version
  isDeleted: "deleted"  // Optional: soft delete when deleted=1
});

Deduplication (ReplacingMergeTree)

Use the ReplacingMergeTree engine to keep only the latest record for your designated sort key:

DeduplicatedTable.ts
// Basic deduplication
const table = new OlapTable<Record>("table", {
  engine: ClickHouseEngines.ReplacingMergeTree,
  orderByFields: ["id"]
});
 
// With version column (keeps record with highest version)
const versionedTable = new OlapTable<Record>("table", {
  engine: ClickHouseEngines.ReplacingMergeTree,
  orderByFields: ["id"],
  ver: "updated_at"  // Column that determines which version to keep
});
 
// With soft deletes (requires ver parameter)
const softDeleteTable = new OlapTable<Record>("table", {
  engine: ClickHouseEngines.ReplacingMergeTree,
  orderByFields: ["id"],
  ver: "updated_at",
  isDeleted: "deleted"  // UInt8 column: 1 marks row for deletion
});

Deduplication Caveats

ClickHouse’s ReplacingMergeTree engine runs deduplication in the background AFTER data is inserted into the table. This means that duplicate records may not be removed immediately.

Version Column (ver): When specified, ClickHouse keeps the row with the maximum version value for each unique sort key.

Soft Deletes (is_deleted): When specified along with ver, rows where this column equals 1 are deleted during merges. This column must be UInt8 type.

For more details, see the ClickHouse documentation.

Streaming from S3 (S3Queue)

Use the S3Queue engine to automatically ingest data from S3 buckets as files are added:

S3Queue with Materialized Views

S3Queue tables only process new files added to S3 after table creation. When used as a source for materialized views, no backfill occurs - the MV will only start populating as new files arrive. See the Materialized Views documentation for more details.

S3StreamingTable.ts
import { OlapTable, ClickHouseEngines } from '@514labs/moose-lib';
 
// Use direct configuration (S3Queue does not support orderByFields)
export const s3Events = new OlapTable<S3Event>("s3_events", {
  engine: ClickHouseEngines.S3Queue,
  s3Path: "s3://my-bucket/data/*.json",
  format: "JSONEachRow",
  settings: {
    mode: "unordered",
    keeper_path: "/clickhouse/s3queue/events"
  }
});

S3Queue ORDER BY not supported

S3Queue is a streaming engine and does not support orderByFields or ORDER BY clauses. Configure only engine-specific parameters like s3Path, format, and settings.

⚠️ NEVER hardcode AWS credentials!

Security Risk: Hardcoding credentials in your code embeds them in Docker images and deployment artifacts, creating serious security vulnerabilities.

Solution: Use mooseRuntimeEnv for runtime credential resolution:

SecureS3Streaming.ts
import { OlapTable, ClickHouseEngines, mooseRuntimeEnv } from '@514labs/moose-lib';
 
// ✅ RECOMMENDED: Runtime environment variable resolution
export const secureS3Events = new OlapTable<S3Event>("s3_events", {
  engine: ClickHouseEngines.S3Queue,
  s3Path: "s3://my-bucket/data/*.json",
  format: "JSONEachRow",
  awsAccessKeyId: mooseRuntimeEnv.get("AWS_ACCESS_KEY_ID"),
  awsSecretAccessKey: mooseRuntimeEnv.get("AWS_SECRET_ACCESS_KEY"),
  settings: {
    mode: "unordered",
    keeper_path: "/clickhouse/s3queue/events"
  }
});

Then set environment variables:

Terminal
export AWS_ACCESS_KEY_ID="AKIA..."
export AWS_SECRET_ACCESS_KEY="your-secret-key"
moose prod up

Benefits:

  • Credentials never embedded in Docker images
  • Supports credential rotation (changing passwords triggers table recreation)
  • Different credentials per environment (dev/staging/prod)
  • Clear error messages if environment variables are missing

S3Queue Requirements

S3Queue requires ClickHouse 24.7+ and proper ZooKeeper/ClickHouse Keeper configuration for coordination between replicas. Files are processed exactly once across all replicas.

Direct S3 Access (S3)

Use the S3 engine for direct read/write access to S3 storage without streaming semantics:

S3Table.ts
import { OlapTable, ClickHouseEngines, mooseRuntimeEnv } from '@514labs/moose-lib';
 
// S3 table with credentials (recommended with mooseRuntimeEnv)
export const s3Data = new OlapTable<DataRecord>("s3_data", {
  engine: ClickHouseEngines.S3,
  path: "s3://my-bucket/data/file.json",
  format: "JSONEachRow",
  awsAccessKeyId: mooseRuntimeEnv.get("AWS_ACCESS_KEY_ID"),
  awsSecretAccessKey: mooseRuntimeEnv.get("AWS_SECRET_ACCESS_KEY"),
  compression: "gzip"
});
 
// Public S3 bucket (no authentication)
export const publicS3 = new OlapTable<DataRecord>("public_s3", {
  engine: ClickHouseEngines.S3,
  path: "s3://public-bucket/data/*.parquet",
  format: "Parquet",
  noSign: true  // Use NOSIGN for public buckets
});

S3 vs S3Queue

  • S3: Direct read/write access to S3 files. Use for batch processing or querying static data.
  • S3Queue: Streaming engine that automatically processes new files as they arrive. Use for continuous data ingestion.

Both engines support the same credential management and format options.

In-Memory Buffer (Buffer)

The Buffer engine provides an in-memory buffer that flushes data to a destination table based on time, row count, or size thresholds:

BufferTable.ts
import { OlapTable, ClickHouseEngines } from '@514labs/moose-lib';
 
// First create the destination table
export const destinationTable = new OlapTable<Record>("destination", {
  engine: ClickHouseEngines.MergeTree,
  orderByFields: ["id", "timestamp"]
});
 
// Then create buffer that writes to it
export const bufferTable = new OlapTable<Record>("buffer", {
  engine: ClickHouseEngines.Buffer,
  targetDatabase: "local",
  targetTable: "destination",
  numLayers: 16,
  minTime: 10,        // Min 10 seconds before flush
  maxTime: 100,       // Max 100 seconds before flush
  minRows: 10000,     // Min 10k rows before flush
  maxRows: 1000000,   // Max 1M rows before flush
  minBytes: 10485760, // Min 10MB before flush
  maxBytes: 104857600 // Max 100MB before flush
});

Buffer Engine Considerations

  • Data in buffer is lost if server crashes before flush
  • Not suitable for critical data that must be durable
  • Best for high-throughput scenarios where minor data loss is acceptable
  • Buffer and destination table must have identical schemas
  • Cannot use orderByFields, partitionBy, or sampleByExpression on buffer tables

For more details, see the ClickHouse Buffer documentation.

Distributed Tables (Distributed)

The Distributed engine creates a distributed table across a ClickHouse cluster for horizontal scaling:

DistributedTable.ts
import { OlapTable, ClickHouseEngines } from '@514labs/moose-lib';
 
// Distributed table across cluster
export const distributedTable = new OlapTable<Record>("distributed_data", {
  engine: ClickHouseEngines.Distributed,
  cluster: "my_cluster",
  targetDatabase: "default",
  targetTable: "local_table",
  shardingKey: "cityHash64(id)"  // Optional: how to distribute data
});

Distributed Table Requirements

  • Requires a configured ClickHouse cluster with remote_servers configuration
  • The local table must exist on all cluster nodes
  • Distributed tables are virtual - data is stored in local tables
  • Cannot use orderByFields, partitionBy, or sampleByExpression on distributed tables
  • The cluster name must match a cluster defined in your ClickHouse configuration

For more details, see the ClickHouse Distributed documentation.

Replicated Engines

Replicated engines provide high availability and data replication across multiple ClickHouse nodes. Moose supports all standard replicated MergeTree variants:

  • ReplicatedMergeTree - Replicated version of MergeTree
  • ReplicatedReplacingMergeTree - Replicated with deduplication
  • ReplicatedAggregatingMergeTree - Replicated with aggregation
  • ReplicatedSummingMergeTree - Replicated with summation
ReplicatedEngines.ts
import { OlapTable, ClickHouseEngines } from "@514labs/moose-lib";
 
// Basic replicated table with explicit paths
const replicatedTable = new OlapTable<Record>("records", {
  engine: ClickHouseEngines.ReplicatedMergeTree,
  keeperPath: "/clickhouse/tables/{database}/{shard}/records",
  replicaName: "{replica}",
  orderByFields: ["id"]
});
 
// Replicated with deduplication
const replicatedDedup = new OlapTable<Record>("dedup_records", {
  engine: ClickHouseEngines.ReplicatedReplacingMergeTree,
  keeperPath: "/clickhouse/tables/{database}/{shard}/dedup_records",
  replicaName: "{replica}",
  ver: "updated_at",
  isDeleted: "deleted",
  orderByFields: ["id"]
});
 
// For ClickHouse Cloud or Boreal (no parameters needed)
const cloudReplicated = new OlapTable<Record>("cloud_records", {
  engine: ClickHouseEngines.ReplicatedMergeTree,
  orderByFields: ["id"]
});

Replication Parameters

The keeper_path and replica_name parameters are optional for replicated engines:

  • Omit both parameters (recommended): Moose uses smart defaults that work in both ClickHouse Cloud and self-managed environments. The default path pattern /clickhouse/tables/{uuid}/{shard} with replica {replica} works automatically with Atomic databases (default in modern ClickHouse).

  • Provide custom paths: You can still specify both parameters explicitly if you need custom replication paths for your self-managed cluster.

Note: Both parameters must be provided together, or both omitted. The {uuid}, {shard}, and {replica} macros are automatically substituted by ClickHouse at runtime.

For more details, see the ClickHouse documentation on data replication.

Externally Managed Tables

If you have a table that is managed by an external system (e.g Change Data Capture like ClickPipes), you can still use Moose to query it. You can set the config in the table config to set the lifecycle to EXTERNALLY_MANAGED.

ExternallyManagedTable.ts
import { OlapTable, LifeCycle } from "@514labs/moose-lib";
 
// Table managed by external system
const externalTable = new OlapTable<UserData>("external_users", {
  orderByFields: ["id", "timestamp"],
  lifeCycle: LifeCycle.EXTERNALLY_MANAGED  // Moose won't create or modify this table
});

Learn More About LifeCycle Management

Learn more about the different lifecycle options and how to use them in the LifeCycle Management documentation.

Invalid Configurations

InvalidConfig.ts
// Error: No primary key or orderByFields
interface BadRecord1 {
  field1: string;
  field2: number;
}
const badTable1 = new OlapTable<BadRecord1>("bad_table1");
 
// Error: Primary key not first in orderByFields
interface BadRecord2 {
  id: Key<string>;
  field1: string;
}
const badTable2 = new OlapTable<BadRecord2>("bad_table2", {
  orderByFields: ["field1", "id"]  // Wrong order - primary key must be first
});
 
// Error: Nullable field in orderByFields
interface BadRecord3 {
  id: Key<string>;
  field1: string;
  field2?: number;
}
const badTable3 = new OlapTable<BadRecord3>("bad_table3", {
  orderByFields: ["id", "field2"]  // Can't have nullable field in orderByFields
});

Development Workflow

Local Development with Hot Reloading

One of the powerful features of Moose is its integration with the local development server:

  1. Start your local development server with moose dev
  2. When you define or modify an OlapTable in your code and save the file:
    • The changes are automatically detected
    • The TypeScript compiler plugin processes your schema definitions
    • The infrastructure is updated in real-time to match your code changes
    • Your tables are immediately available for testing

For example, if you add a new field to your schema:

HotReloading.ts
// Before
interface BasicSchema {
  id: Key<string>;
  name: string;
}
 
// After adding a field
interface BasicSchema {
  id: Key<string>;
  name: string;
  createdAt: Date;  // New field
}

The Moose framework will:

  1. Detect the change when you save the file
  2. Update the table schema in the local ClickHouse instance
  3. Make the new field immediately available for use

Verifying Your Tables

You can verify your tables were created correctly using:

Terminal
# List all tables in your local environment
moose ls

Connecting to your local ClickHouse instance

You can connect to your local ClickHouse instance with your favorite database client. Your credentials are located in your moose.config.toml file:

moose.config.toml
[clickhouse_config]
db_name = "local"
user = "panda"
password = "pandapass"
use_ssl = false
host = "localhost"
host_port = 18123
native_port = 9000