Consumption APIs
Viewing typescript
switch to python
Overview
Consumption APIs make it easy to build type-safe HTTP GET
endpoints for surfacing data from your OLAP database. These APIs can help power user-facing analytics, dashboards and other front-end components, or even enable AI tools to interact with your data.
Working with Consumption APIs
Model your API parameters
Define the names and types of the parameters your API will accept
Write a route handler function
Write a simple, strongly-typed function that constructs a SQL query and returns the results
Moose Generates Validation & Docs
Moose automatically generates validation, type conversion, and OpenAPI documentation for your API request parameters and response body
Integrate with your API client
Use the generated API spec for your frontend applications or use other tools to interact with your API
Creating API Endpoints
import { ConsumptionApi } from "@514labs/moose-lib";
interface QueryParams {
filterField: string;
maxResults: number;
}
interface ResultItem {
id: number;
name: string;
value: number;
}
type ResponseBody = ResultItem[];
const exampleApi = new ConsumptionApi<QueryParams, ResponseBody>("example_endpoint",
async ({ filterField, maxResults }: QueryParams, { client, sql }) => {
const query = sql`
SELECT
id,
name,
value
FROM example_table
WHERE category = ${filterField}
LIMIT ${maxResults}`;
return client.query.execute(query);
});
from moose_lib import ConsumptionApi
from pydantic import BaseModel
# Define the query parameters
class QueryParams(BaseModel):
filterField: str
maxResults: int
# Define the response body
class ResponseBody(BaseModel):
id: int
name: str
# Define the route handler function
def run(params: QueryParams) -> ResponseBody:
## Your logic here...
return ResponseBody(id=1, name="Example")
# Create the API
example_api = ConsumptionApi[QueryParams, ResponseBody](name="example_endpoint", query_function=run)
The ConsumptionApi
class takes:
- Route name: The URL path to access your API (e.g.,
"example_endpoint"
) - Handler function: Processes requests with typed parameters and returns the result
The generic type parameters specify:
QueryParams
: The structure of accepted URL parametersResponseBody
: The exact shape of your API’s response data
MooseTip:
You can name these types anything you want. The first type generates validation for query parameters, while the second defines the response structure for OpenAPI documentation.
Moose automatically handles:
URL parameter validation and type conversion
SQL query interpolation and execution
Response formatting
Automated OpenAPI documentation
Defining Query Parameters
Define your API’s parameters as a TypeScript interface:
interface QueryParams {
filterField: string;
maxResults: number;
optionalParam?: string; // Not required for client to provide
}
Define your API’s parameters as a Pydantic model:
from pydantic import BaseModel
class QueryParams(BaseModel):
filterField: str
maxResults: int
optionalParam?: str | None = None
Moose automatically handles:
- Runtime validation
- Clear error messages for invalid parameters
- OpenAPI documentation generation
Warning:
Complex nested objects and arrays are not supported. Consumption APIs are GET
endpoints designed to be simple and lightweight.
Adding Advanced Type Validation
Moose uses Typia to extract type definitions and provide runtime validation. Use Typia’s tags for more complex validation:
interface QueryParams {
filterField: string;
// Ensure maxResults is a positive integer
maxResults: number & tags.Type<"int64"> & tags.Minimum<"1">;
}
Moose uses Pydantic for runtime validation. Use Pydantic’s Field
class for more complex validation:
from pydantic import BaseModel, Field
class QueryParams(BaseModel):
filterField: str
maxResults: int = Field(..., gt=0)
Common Validation Options
interface QueryParams {
// Numeric validations
id: number & tags.Type<"uint32">; // Positive integer (0 to 4,294,967,295)
age: number & tags.Minimum<18> & tags.Maximum<120>; // Range: 18 <= age <= 120
price: number & tags.ExclusiveMinimum<0> & tags.ExclusiveMaximum<1000>; // Range: 0 < price < 1000
discount: number & tags.MultipleOf<0.5>; // Must be multiple of 0.5
// String validations
username: string & tags.MinLength<3> & tags.MaxLength<20>; // Length between 3-20 characters
email: string & tags.Format<"email">; // Valid email format
zipCode: string & tags.Pattern<"^[0-9]{5}$">; // 5 digits
uuid: string & tags.Format<"uuid">; // Valid UUID
ipAddress: string & tags.Format<"ipv4">; // Valid IPv4 address
// Date validations
startDate: string & tags.Format<"date">; // YYYY-MM-DD format
// Enum validation
status: string & tags.Enum<"active" | "pending" | "inactive">; // Must be one of these values
// Optional parameters
limit?: number & tags.Type<"uint32"> & tags.Maximum<100>; // Optional, if provided: positive integer <= 100
// Combined validations
searchTerm?: (string & tags.MinLength<3>) | null; // Either null or string with ≥3 characters
}
Notice its just regular TypeScript union types. For a full list of validation options, see the Typia documentation.
from pydantic import BaseModel, Field
class QueryParams(BaseModel):
# Numeric validations
id: int = Field(..., gt=0)
age: int = Field(..., gt=0, lt=120)
price: float = Field(..., gt=0, lt=1000)
discount: float = Field(..., gt=0, multiple_of=0.5)
# String validations
username: str = Field(..., min_length=3, max_length=20)
email: str = Field(..., format="email")
zipCode: str = Field(..., pattern=r"^[0-9]{5}$")
uuid: str = Field(..., format="uuid")
ipAddress: str = Field(..., format="ipv4")
# Date validations
startDate: str = Field(..., format="date")
# Enum validation
status: str = Field(..., enum=["active", "pending", "inactive"])
# Optional parameters
limit: int = Field(None, gt=0, lt=100)
For a full list of validation options, see the Pydantic documentation.
Setting Default Values
You can set default values for parameters by setting values for each parameter in the API route handler function signature:
interface QueryParams {
filterField: string;
maxResults: number;
optionalParam?: string; // Not required for client to provide
}
const api = new ConsumptionApi<QueryParams, ResponseBody>("example_endpoint",
async ({ filterField = "example", maxResults = 10, optionalParam = "default" }, { client, sql }) => {
// Your logic here...
}
);
You can set default values for parameters by setting values for each parameter in your Pydantic model:
from pydantic import BaseModel
class QueryParams(BaseModel):
filterField: str = "example"
maxResults: int = 10
optionalParam: str | None = "default"
Implementing Route Handler
Consunmption API route handlers are regular functions, so you can implement whatever arbitrary logic you want inside these functions. The primary purpose of the handler function is to construct a SQL query and return the results to the client:
import {
createConsumptionApi,
ConsumptionHelpers as CH,
} from "@514labs/moose-lib";
import { tags } from "typia";
// Define expected parameters and their types
interface QueryParams {
orderBy: "totalRows" | "rowsWithText" | "maxTextLength" | "totalTextLength";
limit?: number;
startDay?: number & tags.Type<"int32"> & tags.Minimum<1> & tags.Maximum<31>;
endDay?: number & tags.Type<"int32"> & tags.Minimum<1> & tags.Maximum<31>;
}
interface ResponseBody {
dayOfMonth: number;
totalRows?: number;
rowsWithText?: number;
maxTextLength?: number;
totalTextLength?: number;
}
// ConsumptionApi uses compile time code generation to generate a parser for QueryParams
const myApi = new ConsumptionApi<QueryParams, ResponseBody>("my_api_route",
async (
{ orderBy = "totalRows", limit = 5, startDay = 1, endDay = 31 },
{ client, sql }
) => {
const query = sql`
SELECT
dayOfMonth,
${CH.column(orderBy)}
FROM BarAggregated_MV
WHERE
dayOfMonth >= ${startDay}
AND dayOfMonth <= ${endDay}
ORDER BY ${CH.column(orderBy)} DESC
LIMIT ${limit}
`;
// Execute query and return results
const data = await client.query.execute(query);
return data;
}
);
from moose_lib import ConsumptionApi
from app.views.bar_aggregated import BarAggregatedMV
def run(params: QueryParams, client: MooseClient) -> None:
query = f"""
SELECT
dayOfMonth,
{orderBy}
FROM {BarAggregatedMV.target_table.name}
WHERE
dayOfMonth >= {startDay}
AND dayOfMonth <= {endDay}
ORDER BY {orderBy} DESC
LIMIT {limit}
"""
data = client.query.execute(query, {
"orderBy": params.orderBy,
"startDay": params.startDay,
"endDay": params.endDay,
"limit": params.limit
})
return data
Connecting to the Database
Moose provides an instance of a MooseClient
to your route handler function. This client provides access to the database and other Moose resources:
async function handler({ client, sql }: ConsumptionUtil) {
const query = sql`SELECT * FROM users`;
const data = await client.query.execute(query);
}
The MooseClient enables you to execute queries and other database operations. Specifically by using f-string
interpolation to build your queries:
def run(params: QueryParams, client: MooseClient) -> None:
query = f"SELECT * FROM users"
data = client.query.execute(query)
Constructing Safe SQL Queries
The sql
template literal in Moose provides type-safe query construction with protection against SQL injection. Below are some examples of common patterns for builing safe queries:
The MooseClient enables you to execute queries and other database operations. Specifically by using f-string
interpolation to build your queries.
Basic Query Parameter Interpolation
const minAge = 18;
const userRole = "admin";
const query = sql`
SELECT * FROM users
WHERE age > ${minAge}
AND role = ${userRole}
`;
// MooseClient handles type conversion and escaping
const data = await client.query.execute(query);
// EXECUTION: SELECT * FROM users WHERE age > 18 AND role = 'admin'
min_age = 18
user_role = "admin"
query = f"SELECT * FROM users WHERE age > {min_age} AND role = '{user_role}'"
data = client.query.execute(query, {
"min_age": min_age,
"user_role": user_role
})
Table and Column References
Reference tables and columns directly from your Moose objects as variables in your sql
template literals:
import { userTable } from "../tables/userTable";
const query = sql`
SELECT
${userTable.columns.id},
${userTable.columns.name},
${userTable.columns.email}
FROM ${userTable}
WHERE ${userTable.columns.isActive} = true
`;
// EXECUTION: SELECT id, name, email FROM users WHERE is_active = true
from tables import userTable
query = f"""
SELECT
{userTable.columns["id"]},
{userTable.columns["name"]},
{userTable.columns["email"]}
FROM {userTable.name}
WHERE {userTable.columns["isActive"]} = true
"""
data = client.query.execute(query)
Type Safety
Static type checking ensures you only reference columns that actually exist.
Advanced Query Patterns
Dynamic Column & Table Selection
Use ConsumptionHelpers
to handle dynamic column and table references in your queries:
import { ConsumptionHelpers as CH } from "@514labs/moose-lib";
interface QueryParams {
sortBy: string; // Column to sort by
fields: string; // Comma-separated list of columns to select (e.g., "id,name,email")
}
const queryHandler = async ({ sortBy = "id", fields = "id,name" }: QueryParams, { client, sql }) => {
// Split the comma-separated string into individual fields
const fieldList = fields.split(',').map(f => f.trim());
// Build the query by selecting each column individually
const query = sql`
SELECT
${fieldList.map(field => sql`${CH.column(field)}`).join(', ')}
FROM ${userTable}
ORDER BY ${CH.column(sortBy)}
`;
// MooseClient converts fieldList to valid ClickHouse identifiers
return client.query.execute(query);
// EXECUTION: `SELECT id, name FROM users ORDER BY id`
};
import { ConsumptionHelpers as CH } from "@514labs/moose-lib";
interface QueryParams {
tableName: string;
}
const queryHandler = async ({ tableName = "users" }: QueryParams, { client, sql }) => {
const query = sql`
SELECT * FROM ${CH.table(tableName)}
`;
// MooseClient converts tableName to a valid ClickHouse identifier
return client.query.execute(query);
// EXECUTION: `SELECT * FROM users`
};
from app.tables import myTable
colName = "id"
query = f"""SELECT {myTable.columns[colName]} FROM {myTable.name}"""
data = client.query.execute(query)
## MooseClient will automatically interpolate the column name into the query as a valid ClickHouse identifier
## EXECUTION: SELECT id FROM users
Conditional WHERE
Clauses
Build WHERE
clauses based on provided parameters:
interface FilterParams {
minAge?: number;
status?: string;
searchText?: string;
}
const buildQuery = ({ minAge, status, searchText }: FilterParams, { sql }) => {
let conditions = [];
if (minAge !== undefined) {
conditions.push(sql`age >= ${minAge}`);
}
if (status) {
conditions.push(sql`status = ${status}`);
}
if (searchText) {
conditions.push(sql`(name ILIKE ${'%' + searchText + '%'} OR email ILIKE ${'%' + searchText + '%'})`);
}
// Build the full query with conditional WHERE clause
let query = sql`SELECT * FROM ${userTable}`;
if (conditions.length > 0) {
// Join conditions with AND operator
let whereClause = conditions.join(' AND ');
query = sql`${query} WHERE ${whereClause}`;
}
query = sql`${query} ORDER BY created_at DESC`;
return query;
};
def build_query(params: FilterParams, client: MooseClient) -> None:
conditions = []
interpolated = {}
if params.min_age:
conditions.append(f"age >= {min_age}")
interpolated["min_age"] = min_age
if params.status:
conditions.append(f"status = {status}")
interpolated["status"] = status
if params.search_text:
conditions.append(f"name ILIKE '%{search_text}%' OR email ILIKE '%{search_text}%'")
interpolated["search_text"] = search_text
query = f"""SELECT * FROM users WHERE {" AND ".join(conditions)} ORDER BY created_at DESC"""
data = client.query.execute(query, interpolated)
return data
Adding Authentication
Moose supports authentication via JSON web tokens (JWTs). When your client makes a request to your Consumption API, Moose will automatically parse the JWT and pass the authenticated payload to your handler function as the jwt
object:
async (
{ orderBy = "totalRows", limit = 5 },
{ client, sql, jwt }
) => {
// Use jwt.userId to filter data for the current user
const query = sql`
SELECT * FROM userReports
WHERE user_id = ${jwt.userId}
LIMIT ${limit}
`;
return client.query.execute(query);
}
def run(params: QueryParams, client: MooseClient, jwt: dict) -> None:
query = f"""SELECT * FROM userReports WHERE user_id = {jwt["userId"]} LIMIT {limit}"""
data = client.query.execute(query)
return data
JWT Error Handling
Moose validates the JWT signature and ensures the JWT is properly formatted. If the JWT authentication fails, Moose will return a 401 Unauthorized error
.
Understanding Response Codes
Moose automatically provides standard HTTP responses:
Status Code | Meaning | Response Body |
---|---|---|
200 | Success | Your API’s result data |
400 | Validation error | { "error": "Detailed message"} |
401 | Unauthorized | { "error": "Unauthorized"} |
500 | Internal server error | { "error": "Internal server error"} |