Moose

Developing

Data Modeling

Data Modeling

Viewing typescript

switch to python

Overview

Data models in Moose are type definitions that generate your data infrastructure. You write them as TypeScript interfaces, export them from your app’s root index.ts file, and Moose creates the corresponding database tables, APIs, and streams from your code.

Working with Data Models

Define your schema

Create a type definition with typed fields and a primary key using your language's type system

Create infrastructure

Use your model as a type parameter to create tables, APIs, streams, or views

Export from root

Export all models and infrastructure from your app's root file (index.ts/main.py) - Moose reads these exports to generate infrastructure

Run dev server

When you create or modify data models, Moose automatically creates or updates all dependent infrastructure components with your latest code changes.

Quick Start

app/index.ts
// 1. Define your schema (WHAT your data looks like)
interface MyDataModel {
  primaryKey: Key<string>;
  someString: string;
  someNumber: number;
  someDate: Date;
}
 
// 2. YOU control which infrastructure to create (HOW to handle your data)
const pipeline = new IngestPipeline<MyDataModel>("MyDataPipeline", {
  ingest: true,    // Optional: Create API endpoint
  stream: true,    // Optional: Create topic
  table: {         // Optional: Create and configure table
    orderByFields: ["primaryKey", "someDate"],
    deduplicate: true
  }
});

Benefits:

End-to-end type safety across your code and infrastructure

Full control over your infrastructure with code

Zero schema drift - change your types in one place, automatically update your infrastructure

Schema Definition

The WHAT

This section covers how to define your data models - the structure and types of your data.

Basic Types

app/datamodels/BasicDataModel.ts
import { Key } from "@514labs/moose-lib";
 
export interface BasicDataModel {
  // Required: Primary key for your data model
  primaryKey: Key<string>;    // string key
  // or
  numericKey: Key<number>;    // numeric key
 
  // Common types
  someString: string;         // Text
  someNumber: number;         // Numbers
  someBoolean: boolean;       // Boolean
  someDate: Date;             // Timestamps
  someArray: string[];        // Arrays
  someObject: object;         // Objects
  someInteger: number & tags.Type<"int64">; // Integer type possible with specific tags
  
  // Nullable fields
  nullableField?: string;  // Optional field
  nullableField2?: string | null;  // Union type
 
}

Advanced Schema Patterns

Nested Objects

app/datamodels/NestedDataModel.ts
import { Key } from "@514labs/moose-lib";
 
// Define nested object separately
interface NestedObject {
  nestedNumber: number;
  nestedBoolean: boolean;
  nestedArray: number[];
}
 
export interface DataModelWithNested {
  primaryKey: Key<string>;
  
  // Reference nested object
  nestedData: NestedObject;
 
  // Or define inline
  inlineNested: {
    someValue: string;
    someOtherValue: number;
  };
}

Using Enums

app/datamodels/EnumDataModel.ts
import { Key } from "@514labs/moose-lib";
 
enum OrderStatus {
  PENDING = "pending",
  PROCESSING = "processing",
  COMPLETED = "completed"
}
 
export interface Order {
  orderId: Key<string>;
  status: OrderStatus;  // Type-safe status values
  createdAt: Date;
}

Type Mapping

TypeScriptClickHouseDescription
stringStringText values
numberFloat64Numeric values
number & tags.Type<"int64">Int64Integer values
booleanBooleanTrue/false values
DateDateTimeTimestamp values
ArrayArrayLists of values
objectNestedNested structures
EnumEnumEnumerated values

Data Modeling Dos and Don’ts

Do not use any or unknown types:

app/datamodels/AnyFields.ts
interface BadDataModel {
  unknownField: unknown;
  // or
  anyField: any;
}

Do not use union types for flexible fields:

app/datamodels/FlexibleFields.ts
// DO NOT -> Use union types for conditional fields
interface BadDataModel {
  conditionalField: string | number;
}
 
// DO -> break out into multiple optional fields
interface GoodDataModel {
  conditionalString?: string; // Optional field
  conditionalNumber?: number; // Optional field
}

Do not use union types for nullable fields:

app/datamodels/NullableFields.ts
// DO NOT -> Use union types for nullable fields
interface BadDataModel {
  nullableField: string | null;
}
 
// DO -> Use Optional type
interface GoodDataModel { 
  nullableField?: string;
}

Infrastructure Configuration

The HOW

This section covers how to apply your data models to infrastructure components.

Getting Data Into Your Database

IngestPipeline

The most common pattern - combines ingestion, streaming, and storage into a single component:

app/index.ts
import { IngestPipeline } from "@514labs/moose-lib";
 
const myPipeline = new IngestPipeline<MyDataModel>("my_pipeline", {
    ingest: true,
    stream: true,
    table: true
});

What gets created?

An HTTP POST endpoint that accepts and validates incoming data against your data model

A typed Redpanda topic that buffers validated data from the ingest API

A ClickHouse table with the same schema as your data model

A Rust process that syncs data from the stream to the table

Standalone Components

If you don’t need all the components, you can create them individually and wire them together yourself:

OlapTable

Creates a ClickHouse table with the same schema as your data model:

app/index.ts
import { OlapTable } from "@514labs/moose-lib";
 
// Basic table
const myTable = new OlapTable<MyDataModel>("TableName");

Olap Tables

You might use an OlapTable if you do not need streaming ingest capabilities for your data. Learn more about Olap Tables

Stream

Creates a Redpanda topic that can be configured to sync data to a ClickHouse table with the same schema:

app/index.ts
import { Stream } from "@514labs/moose-lib";
 
// Basic stream
const myStream = new Stream<MyDataModel>("TopicName");

Streams

Standalone streams may make sense if you want to transform data on the fly before it is written to the table. Learn more about stream processing

IngestAPI

Creates an HTTP POST endpoint at “/ingest/api-route-name” that accepts and validates incoming data against your data model:

app/index.ts
import { IngestAPI } from "@514labs/moose-lib";
 
const myIngestAPI = new IngestAPI<MyDataModel>("api-route-name"); // Creates an HTTP `POST` endpoint at "/ingest/api-route-name"

Ingest APIs

Ingest APIs are almost always preferred as part of an IngestPipeline instead of being used standalone. Learn more about Ingestion APIs

Getting Data Out of Your Database

Data models also power your downstream data processing workflows after data is stored, enabling you to create materialized views and typed APIs that prepare and expose your data for consumption:

MaterializedView

Materialized views are a way to pre-compute and store the results of complex queries on your data. This allows you to query the materialized view directly for faster results, or use it as the source for another derived table for cascading transformations:

app/index.ts
import { MaterializedView } from "@514labs/moose-lib";
 
const myMaterializedView = new MaterializedView<MyDataModel>({
  selectStatement: sql`SELECT * FROM my_table`,
  tableName: "my_table",
  materializedViewName: "my_materialized_view"
});

ConsumptionAPI

Consumption APIs are a way to expose your data to external consumers. They are typed and validateagainst your data models, ensuring that the client request parameters and response types are correct at runtime:

app/index.ts
import { ConsumptionAPI } from "@514labs/moose-lib";
 
const myConsumptionAPI = new ConsumptionAPI<RequestDataModel, ResponseDataModel>("MyConsumptionAPI"async({request: RequestDataModel}, {client, sql}) => {
      // Do something with the request
  return new ResponseDataModel();
});

Validation

Validation at runtime takes place at the following points:

Next Steps