Data Modeling

Viewing:

Overview

In Moose, data models are just TypeScript interfaces that become the authoritative source for your infrastructure schemas.

Data Models are used to define:

Philosophy

Problem: Analytical Backends are Prone to Schema Drift

Analytical backends are unique in that they typically have to coordinate schemas across multiple systems that each have their own type systems and constraints.

Consider a typical pipeline for ingesting events into a ClickHouse table.

// What you're building:
// API endpoint → Kafka topic → ClickHouse table → Analytics API
 
// Traditional approach: Define schema 4 times
// 1. API validation schema 
const apiSchema = z.object({
  userId: z.string(),
  eventType: z.enum(["click", "view", "purchase"]),
  timestamp: z.string().datetime()
});
 
// 2. Kafka schema (Avro/JSON Schema)
const kafkaSchema = {
  type: "record",
  fields: [
    { name: "userId", type: "string" },
    { name: "eventType", type: "string" },
    { name: "timestamp", type: "string" }
  ]
};
 
// 3. ClickHouse DDL
// CREATE TABLE events (
//   user_id String,
//   event_type LowCardinality(String),
//   timestamp DateTime
// ) ENGINE = MergeTree()
 
// 4. Analytics API response type
interface EventsResponse {
  userId: string;
  eventType: string;
  timestamp: Date;
}

The Problem: When you add a field or change a type, you must update it in multiple places. Miss one, and you get:

  • Silent data loss (Kafka → ClickHouse sync fails)
  • Runtime errors
  • Data quality issues (validation gaps)

Solution: Model In Code, Reuse Everywhere

With Moose you define your schemas in native language types with optional metadata. This lets you reuse your schemas across multiple systems:

app/index.ts
// 1. Define your schema (WHAT your data looks like)
interface MyDataModel {
  primaryKey: Key<string>;
  someString: string & LowCardinality;
  someNumber: number;
  someDate: Date;
  someJson: Record<string, any>;
}
 
// This single interface can be reused across multiple systems:
const pipeline = new IngestPipeline<MyDataModel>("MyDataPipeline", {
  ingest: true,    // POST API endpoint
  stream: true,    // Kafka topic
  table: {         // ClickHouse table
    orderByFields: ["primaryKey", "someDate"],
    deduplicate: true
  }
});

Benefits:

End-to-end type safety across your code and infrastructure

Full control over your infrastructure with code

Zero schema drift - change your types in one place, automatically update your infrastructure

How It Works

The key idea is leveraging Union Types to extend base TypeScript types with “metadata” that represents specific optimizations and details on how to either:

  • map that type in ClickHouse
  • validate the data at runtime
interface Event {
  // Base type: string
  // ClickHouse: String with primary key
  id: Key<string>;
  
  // Base type: string
  // ClickHouse: Decimal(10,2) for precise money
  amount: string & ClickHouseDecimal<10, 2>;
  
  // Base type: string
  // ClickHouse: LowCardinality(String) for enums
  status: string & LowCardinality;
  
  // Base type: Date
  // ClickHouse: DateTime
  createdAt: Date;
}
 
// In your application code:
const event: Event = {
  id: "id_123",
  amount: "99.99",        // Just a string in TypeScript
  status: "completed",    // Just a string in TypeScript
  createdAt: new Date()
};
 
// In ClickHouse:
// CREATE TABLE events (
//   id String,
//   amount Decimal(10,2),
//   status LowCardinality(String),
//   created_at DateTime
// ) ENGINE = MergeTree()
// ORDER BY transaction_id

The metadata annotations are compile-time only - they don’t affect your runtime code. Your application works with regular strings and numbers, while Moose uses the metadata to generate optimized infrastructure.

Building Data Models: From Simple to Complex

Let’s walk through how to model data for different infrastructure components and see how types behave across them.

Simple Data Model Shared Across Infrastructure

A basic data model that works identically across all infrastructure components:

app/datamodels/SimpleShared.ts
export interface SimpleShared {
  id: string;
  name: string;
  value: number;
  timestamp: Date;
}
 
// This SAME model creates all infrastructure
const pipeline = new IngestPipeline<SimpleShared>("simple_shared", {
  ingest: true,  // Creates: POST /ingest/simple_shared
  stream: true,  // Creates: Kafka topic
  table: true    // Creates: ClickHouse table
});
 
// The exact same types work everywhere:
// - API validates: { id: "123", name: "test", value: 42, timestamp: "2024-01-01T00:00:00Z" }
// - Kafka stores: { id: "123", name: "test", value: 42, timestamp: "2024-01-01T00:00:00Z" }
// - ClickHouse table: id String, name String, value Float64, timestamp DateTime

Key Point: One model definition creates consistent schemas across all systems.

Composite Types Shared Across Infrastructure

Complex types including nested objects, arrays, and enums work seamlessly across all components:

app/datamodels/CompositeShared.ts
import { Key } from "@514labs/moose-lib";
 
export interface CompositeShared {
  id: Key<string>;  // Primary key
  status: "active" | "pending" | "completed";  // Enum
  
  // Nested object
  metadata: {
    category: string;
    priority: number;
    tags: string[];
  };
  
  // Arrays and maps
  values: number[];
  attributes: Record<string, any>;
  
  // Optional field
  description?: string;
  createdAt: Date;
}
 
// Using in IngestPipeline - all types preserved
const pipeline = new IngestPipeline<CompositeShared>("composite_shared", {
  ingest: true,
  stream: true,
  table: true
});
 
// How the types map:
// - API validates nested structure and enum values
// - Kafka preserves the exact JSON structure
// - ClickHouse creates:
//   - id String (with PRIMARY KEY)
//   - status Enum8('active', 'pending', 'completed')
//   - metadata.category String, metadata.priority Float64, metadata.tags Array(String)
//   - values Array(Float64)
//   - attributes String (JSON)
//   - description Nullable(String)
//   - createdAt DateTime

Key Point: Complex types including nested objects and arrays work consistently across all infrastructure.

ClickHouse-Specific Types (Standalone vs IngestPipeline)

ClickHouse type annotations optimize database performance but are transparent to other infrastructure:

app/datamodels/ClickHouseOptimized.ts
import { Key, ClickHouseDecimal, LowCardinality, ClickHouseNamedTuple } from "@514labs/moose-lib";
 
export interface ClickHouseOptimized {
  id: Key<string>;
  
  // ClickHouse-specific type annotations
  amount: string & ClickHouseDecimal<10, 2>;    // Decimal(10,2) in ClickHouse
  category: string & LowCardinality;             // LowCardinality(String) in ClickHouse
  
  // Optimized nested type
  details: {
    name: string;
    value: number;
  } & ClickHouseNamedTuple;                      // NamedTuple in ClickHouse
  
  timestamp: Date;
}
 
// SCENARIO 1: Standalone OlapTable - gets all optimizations
const table = new OlapTable<ClickHouseOptimized>("optimized_table", {
  orderByFields: ["id", "timestamp"]
});
// Creates ClickHouse table with:
// - amount Decimal(10,2)
// - category LowCardinality(String)
// - details Tuple(name String, value Float64)
 
// SCENARIO 2: IngestPipeline - optimizations ONLY in ClickHouse
const pipeline = new IngestPipeline<ClickHouseOptimized>("optimized_pipeline", {
  ingest: true,
  stream: true,
  table: true
});
 
// What happens at each layer:
// 1. API receives/validates: { amount: "123.45", category: "electronics", ... }
//    - Sees amount as string, category as string (annotations ignored)
// 2. Kafka stores: { amount: "123.45", category: "electronics", ... }
//    - Plain JSON, no ClickHouse types
// 3. ClickHouse table gets optimizations:
//    - amount stored as Decimal(10,2)
//    - category stored as LowCardinality(String)
//    - details stored as NamedTuple

Key Point: ClickHouse annotations are metadata that ONLY affect the database schema. Your application code and other infrastructure components see regular TypeScript/Python types.

API Contracts with Runtime Validators

APIs use runtime validation to ensure query parameters meet your requirements:

app/apis/consumption_with_validation.ts
import { tags, ConsumptionAPI } from "@514labs/moose-lib";
 
// Query parameters with runtime validation
interface SearchParams {
  // Date range validation
  startDate: string & tags.Format<"date">;              // Must be YYYY-MM-DD
  endDate: string & tags.Format<"date">;
  
  // Numeric constraints
  minValue?: number & tags.Minimum<0>;                 // Optional, but if provided >= 0
  maxValue?: number & tags.Maximum<1000>;              // Optional, but if provided <= 1000
  
  // String validation
  category?: string & tags.MinLength<2> & tags.MaxLength<50>;
  
  // Pagination
  page?: number & tags.Type<"int32"> & tags.Minimum<1>;
  limit?: number & tags.Type<"int32"> & tags.Minimum<1> & tags.Maximum<100>;
}
 
// Response data model
interface SearchResult {
  id: string;
  name: string;
  value: number;
  category: string;
  timestamp: Date;
}
 
// Create validated API endpoint
const searchAPI = new ConsumptionAPI<SearchParams, SearchResult[]>(
  "search",
  async (params, { client }) => {
    // Params are already validated when this runs
    const query = `
      SELECT * FROM data_table
      WHERE timestamp >= {startDate: Date}
      AND timestamp <= {endDate: Date}
      ${params.minValue ? `AND value >= {minValue: Float64}` : ''}
      ${params.maxValue ? `AND value <= {maxValue: Float64}` : ''}
      ${params.category ? `AND category = {category: String}` : ''}
      LIMIT {limit: UInt32}
      OFFSET {offset: UInt32}
    `;
    
    return client.query(query, {
      startDate: params.startDate,
      endDate: params.endDate,
      minValue: params.minValue,
      maxValue: params.maxValue,
      category: params.category,
      limit: params.limit || 10,
      offset: ((params.page || 1) - 1) * (params.limit || 10)
    });
  }
);
 
// API Usage Examples:
// âś… Valid: GET /consumption/search?startDate=2024-01-01&endDate=2024-01-31
// âś… Valid: GET /consumption/search?startDate=2024-01-01&endDate=2024-01-31&minValue=100&limit=50
// ❌ Invalid: GET /consumption/search?startDate=Jan-1-2024 (wrong date format)
// ❌ Invalid: GET /consumption/search?startDate=2024-01-01&endDate=2024-01-31&limit=200 (exceeds max)

Key Point: Runtime validators ensure API consumers provide valid data, returning clear error messages for invalid requests before any database queries run.

Additional Data Modeling Patterns

Modeling for Stream Processing

When you need to process data in real-time before it hits the database:

app/datamodels/StreamExample.ts
import { Key, LowCardinality } from "@514labs/moose-lib";
 
// Raw data from external source
interface RawData {
  id: Key<string>;
  timestamp: Date;
  rawPayload: string;
  sourceType: string & LowCardinality;
}
 
// Processed data after transformation
interface ProcessedData {
  id: Key<string>;
  timestamp: Date;
  field1: string;
  field2: string & LowCardinality;
  numericValue: number;
  attributes: Record<string, any>;
}
 
// Create stream with transformation
const rawStream = new Stream<RawData>("raw-stream");
const processedStream = new Stream<ProcessedData>("processed-stream");
 
// Transform raw data to processed
rawStream.addConsumer(async (raw: RawData) => {
  const parsed = JSON.parse(raw.rawPayload);
  
  const processed: ProcessedData = {
    id: raw.id,
    timestamp: raw.timestamp,
    field1: parsed.field_1,
    field2: parsed.field_2,
    numericValue: parseFloat(parsed.value) || 0,
    attributes: parsed.attributes || {}
  };
  
  await processedStream.publish(processed);
});
 
// Sink to ClickHouse
const table = new OlapTable<ProcessedData>("processed_data", {
  stream: processedStream,
  orderByFields: ["id", "timestamp"]
});

Modeling for Workflow Tasks

Define strongly-typed inputs and outputs for async jobs:

app/workflows/task_example.ts
import { Task, tags } from "@514labs/moose-lib";
 
// Input validation with constraints
interface TaskInput {
  id: string & tags.Format<"uuid">;
  items: string[];
  taskType: "typeA" | "typeB" | "typeC";
  options?: {
    includeMetadata: boolean;
    maxItems?: number & tags.Minimum<1> & tags.Maximum<100>;
  };
}
 
// Structured output
interface TaskOutput {
  id: string;
  processedAt: Date;
  resultA?: {
    category: string;
    score: number;
    details: Record<string, any>;
  };
  resultB?: {
    values: string[];
    metrics: number[];
  };
  resultC?: {
    field1: string;
    field2: string;
    field3: number;
  };
}
 
// Create workflow task
const exampleTask = new Task<TaskInput, TaskOutput>(
  "example-task",
  {
    run: async (input) => {
      // Process data based on task type
      const output: TaskOutput = {
        id: input.id,
        processedAt: new Date()
      };
      
      if (input.taskType === "typeA") {
        output.resultA = await processTypeA(input);
      }
      
      return output;
    },
    
    retries: 3,
    timeout: 30000  // 30 seconds
  }
);